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ABSTRACT

We test the hypothesis that the atmospheric circulations of Jupiter are a manifestation of large-scale con-
vective instability brought about primarily by the presence of an internal heat source. This is done by ex-
amining the nature of convection in an unstable rotating atmosphere through numerical integration of the
Boussinesq equations. The general properties of convection are obtained from solutions with laboratory-
scale parameters while particular Jovian characteristics are studied through calculations with planetary-
scale parameters.

In the Jupiter calculations, physical and theoretical constraints on parametric freedom produce a desir-
ably under-determined system in which there remain more observational criteria to be explained than free
parameters to manipulate.

The solutions indicate that a tropical westerly jet can be produced by an axisymmetric flow provided that
the atmosphere is relatively shallow (d <500 km). A strong equatorial westerly flow can occur provided that
there is a strong diffusion of the tropical jet. The strength of such a diffusion is of a magnitude that suggests
that it can only realistically be brought about by large-scale non-axisymmetric disturbances. The axisym-
metry of the convective rolls, i.e., their longitudinal stability, is controlled by the latitudinal variation of Q
cosf. This differential rotation suppresses the organization of large-scale convective motion poleward of 45°
while toward the equator such motions can set in strongly.

The banded structure and zonal velocity field of the most realistic theoretical solution resemble the ob-
served, having five zones (w>0) and four belts (« <0) each with its characteristic differential zonal motion.
The square-shaped form of the mean vertical velocity variation with latitude produces sharply bounded
zones of uniform intensity.

Calculations to test the stability of the axisymmetric flow to longitudinal perturbations indicate that ovals
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and streaks are the natural form of the disturbance elements.

1. Introduction

The question of whether an atmosphere can be
statically unstable everywhere and yet organize itself
into a large-scale flow pattern appears to be a basic
problem in understanding the circulations on Jupiter
and in the Earth’s tropics. We would like to examine
this problem by deriving the possible character of an
unstable atmosphere and then by using the observed
Jupiter flow in a positive comparison, suggest its
existence.

In any study relating to a remote planetary atmo-
sphere, the level of inquiry and understanding pursued
must depend upon two major considerations: 1) the
observational data and 2) the governing physical laws.
Both items are equally important, since physical
simplicity can compensate for limited data and perhaps
allow a reasonable understanding of a remote atmo-
sphere to be attained. In particular, the orderliness
(i.e., the axisymmetry) of the Jovian cloud systems is
suggestive of an underlying simplicity in the dynamics
of that atmosphere that might permit such an under-
standing at this time. With this in mind, our investiga-
tion will take the simplest possible form and will be
more in the nature of examining the classification and

structure of basic dynamical mechanisms than of a
planetary simulation.

It would provide a simplifying reduction and
generalization of planetary atmosphere theory if the
atmospheric circulation systems of the planets could be
classified into some simple scheme, just as stars and
galaxies can be placed within a few spectral categories.
We would like to suggest that two basic broad categories
of planetary dynamical systems may be possible. These,
for lack of better terminology, we shall refer to as the
baroclinic and convective systems. By a baroclinic system
we denote a system whose physical behavior is primarily
determined by the need to transfer heat horizontally
from hot to cold regions. Such a system is associated
with a horizontal (potential) temperature differential
driving the motions so that the system may be denoted
(partly schematically) by the symbol AyT. A convec-
tive system specifies a planetary atmosphere where the
primary need is to transfer heat upward to higher levels
and may be denoted by a positive vertical (potential or
equivalent! potential) temperature differential symbol
AyT. Various fluid dynamical modes can exist within
both categories. A fundamental difference between the

! When condensation effects are important.
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two systems lies in the form of their turbulence fields
with the result that different degrees of predictability
may be expected.

Limited laboratory analogs of the baroclinic and
convective categories occur, respectively, in the well-
known Hide (annulus) and Bénard (with rotation)
experiments. Because of the simple boundary conditions
in these experiments, their flows can also be quantita-
tively classified in terms of the Richardson, Rossby and
Taylor numbers or the Rayleigh and Taylor numbers.
On the planetary scale we are familiar with the baro-
clinic system in the Earth’s extratropical dynamics.
Despite large topographical influences the Earth’s ocean
and the Martian atmosphere may also be essentially
baroclinic. Venus has an intricate circulation (Rivas,
1971), but is nonetheless baroclinic, being driven by a
complex Ay T. However, it has not yet been established
that a convective system can exist on a planetary scale,?
even though there is evidence for it on the solar scale.
Thus, it is the purpose of this paper to hypothesize such
a system and to evaluate the consequences.

Attempts to categorize planetary atmosphere be-
havior are implicit in the recent papers of Golitsyn
(1970) and Stone (1972a). Golitsyn’s derivation of
similarity parameters for the radiative-dynamical sys-
tems of the planets provides a classification of atmo-
spheric energetics that may be too complex to verify
with the small observational sample available. Stone’s
paper involves the derivation of ‘“a theory for the static
stability” of rotating planetary atmospheres and
concentrates on atmospheres where the baroclinic
instability mechanisms could predominate. Such a
theory could provide a more exacting baroclinic
classification. Stone’s theory, however, cannot provide
a complete specification of a planetary atmosphere for
its assumptions are invalid, for example, for the Earth’s
tropical circulation. To classify a particular atmosphere
requires that the relative importance of the two basic
thermal influences, Ay T and AyT, and their associated
sources of available potential energy be evaluated.
Stone’s (1972a) analysis covers the case where the
baroclinic forcing AxzT can be assumed to dominate.
He then seeks the associated —AyT. We suggest that
it is also necessary to consider flows in which AyT
dominates and for which a dependent AT can be
evaluated if desired.

The Earth’s atmosphere, being baroclinic in extra-
tropical regions and probably convective in the tropics,
falls into a hybrid category. It is not clear that the
tropical circulation is primarily a statically stable
circulation driven by the tropical AyT or is a large
convective cell driven by conditional convective
instability. The tropics may be equally influenced by
both AT effects and be too idiosyncratic to be a good
example of any basic dynamical mechanism.

? Except perhaps in a highly specialized form in the ITCZ.
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Thus, only on Jupiter and Saturn does it appear that
we could have a manifestation of a simple convective
atmosphere. The alternative possibility, that Jupiter’s
circulation could be explained by a baroclinic mecha-
nism, was first suggested by Stone (1967) and Gierasch
and Stone (1968) but Stone’s (1972b) later analysis has
narrowed down, almost to the point of exclusion, the
possibility that the inertial mode could produce an
equatorial jet® Other authors [notably Lau (1913),
Wasiutynski (1946) and Hide (1969); also see Gierasch
(1970)7] have pointed out the morphological similarity
between the banded structure of Jupiter and that
obtained in certain laboratory experiments on Bénard
convection. Clearly, a convective mode should be
favored In a system with a dominant internal heat
source (Jupiter) or in a system which behaves as if it
was heated from below due to its transparency to solar
radiation (Earth’s tropics?). However, the existence of
such a mode on a planetary scale has not been
established.

The fact that Jupiter has an interior heat source that
exerts a predominant influence on its atmospheric
circulation is loosely suggested by a comparison of the
simple observation features of Jupiter and Saturn, as
follows. First, consider the similarities of the two
atmospheres: 1) axisymmetric banded structure, 2)
strong equatorial jets, and 3) comparable physical
configuration [rotation rate, high albedo (0.6), small
orbit eccentricity |. Second, consider the dissimilarities
between the two planets: 1) the equatorial inclinations
are 3° for Jupiter and 27° for Saturn, and 2) Saturn
receives one-fourth as much solar radiation as Jupiter
but its jet is four times stronger. Now the dissimilarities
are with respect to the solar influence which suggests
that the similarities, i.e., the dynamical system, can
have little correlation with the solar influence and must
be primarily determined by internal heating. The ab-
sence of any apparent seasonal variations in the strongly
inclined Saturn atmosphere points to a weak solar
influence and the strength of Saturn’s jet compared to
Jupiter’s would seem to be more easily explainable by
the presence of an internal energy source [possibly
larger than that observed by Auman et al. (1969)].
Although such arguments based on indirect evidence
are ambivalent if the flow structure is unknown,
quantitative estimates of the Jovian internal heat
sources from the observed effective temperatures do put
their values at about 3/2 times as strong as the solar
supply (Aumann et al.; Trafton and Wildey, 1970).

The best confirmed features of the Jovian motions
that require a theoretical explanation are those that
have been observed long enough to have a climatological
significance. The phenomena, documented by Peek
(1938), are as follows:

# However, a numerical investigation of this mode is required
for completeness.
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1) The axisymmetric, to first order, banded structure
and uniform polar regions.

2) There is a differential rotation within zones (light
color) and belts (dark color) such that positive zonal
motion is associated with the equatorward edges of
belts (poleward edges of zones) and negative zonal
motion with the poleward edges of belts (equatorward
edges of zones). The correlation between zones and
belts and the upper and lower levels of the atmosphere
and then perhaps with vertical motion is unknown.
The consensus opinion seems to be that the zones are
upper level clouds whereas the belts relate to a deeper
level in the atmosphere. The cloud layer models of
Lewis (1969) suggest that clouds may be expected at
three different levels in our region of interest: NH; at
150K, NHHS at 225K and H;0 at 275K, and that the
region between the top and bottom clouds (~80 km)
is convective.

3) There is a strong positive equatorial zonal motion
of ~100 m sec’. A more detailed analysis of the
observations by Chapman (1969) has provided an
estimate of the wvariation of the upper level zonal
velocity with latitude.

4) The shape of the disturbances, i.e., deviations
from the axisymmetric structure is well known and
seems to be dominated by the white ovals.

5) The Great Red Spot.

The calculations made to investigate the form of a
convective atmosphere and its relation to the Jovian
system are presented in four sections. The simplest
question is asked first, that is, how do sphericity and
rotation affect the well-known Bénard convection
characteristics? To answer this, solutions are obtained
in Section 3 that describe Bénard convection on a
rotating sphere for laboratory scale values. Then it is
shown in Section 4 how such convection can be pro-
duced for a planetary-scale shallow atmosphere by the
use of eddy viscosities. In that section it will also be
shown how a tropical jet can be produced and how the
shape of the jet allows the depth of the atmosphere to
be estimated.

In Section 5 more specific Jupiter-related calculations
are made to derive the closest matching solution to the
observed data. We are then led in Section 6 to examine
a basic problem that must be surmounted in under-
standing a convective atmosphere, i.e., how do we
correctly parameterize turbulent convection on a
planetary scale? This is a most difficult question for no
good theoretical links between linear Bénard theory and
the study of thermal turbulence. The only links avail-
able are the concepts of eddy diffusion and mixing-
length theory and in Section 6 the latter is exploited in
the form of nonlinear viscosities in an attempt to deal
with this problem.
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2. The mathematical model

The system of equations to be integrated represents a
highly idealized system. Both the incompressible and
Boussinesq assumptions are made to provide a simple
mathematical system that is convenient for calculations
over a wide range of parameter values. Although these
approximations inhibit a direct simulation of or
accurate quantitative comparisons with Jupiter, the
Boussinesq system does provide the lowest level of
model that can produce most of the important modes
expected to occur in the Jovian atmosphere. By proceed-
ing from the simplest models we can hope to obtain an
understanding of possible later simulations. Such was
the approach in the evolution of the understanding of
the Earth’s global circulation from Eady’s (1949) simple
incompressible Boussinesq model to later simulations.
Simple abstract models have the advantage of general-
ity, so that their basic modes are of interest in them-
selves even if they should prove to be irrelevant to the
particular natural phenomenon under discussion. The
equations are also applied outside the intended range of
the Boussinesq approximation but it is believed that the
resulting distortions are quantitative, not qualitative.

To construct an elementary planetary model, simple
but universal boundary conditions on the thermal field
are desirable. Either 7 or T, may be specified, both
forms being general. For simplicity and precision in
providing a fixed AT for evaluating parameters, it
appears more appropriate to specify 7. In observing a
planet, 7 rather than 7, is most likely to be observed
so such a condition is also appropriate for application.
The T and 7. conditions correspond to assuming
infinite heat capacity (ocean-like) and finite heat
capacity (land-like), respectively, for the interface.
For internal heating the 7T condition seems more
appropriate.

Thus, we consider the motion of an incompressible
fluid bounded by a spherical shell of inner radius @ and
outer radius a¢-+d. The fluid is subject to a gravitational
force acting toward the center of the spheres. The inner
sphere rotates with a uniform rate Q. Motion relative
to the solid rotation of the system is measured in
spherical coordinates (r,0,¢), where r is radial distance,
6 the co-latitude measured from the Pole, and ¢ the
azimuthal angle (longitude). The velocity components
are #, v, w in the zonal, co-latitudinal and vertical
directions, respectively.

The Boussinesq fluid is defined as being such that
density variations are negligible except in the buoyancy
term, and that the coefficients », «, 8 of viscosity, heat
diffusivity?, and thermal expansion are constant. The
centrifugal acceleration is taken to be negligible com-
pared with gravity as a consequence of which we can
take the outer sphere to be a free-slip rigid lid surface
of constant height for the fluid. [However, the oblate-

4 Apart from the mixing-length formulation of Section 6.
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ness of Jupiter is relatively large (1:15) and its effects,
although secondary, should be investigated.]

The inner and outer spheres are taken to be perfectly
conducting and held at different constant temperatures
Ty and T, respectively. The imposed radial temperature
differential AT=T,—7T, drives the fluid away from a
state of solid rotation. The lateral boundaries (usually
at the pole or 457 latitude and the equator) are assumed
to have no heat flow across them. Most of the calcula-
tions are made for a hemispheric domain. This system
forms the classical Bénard problem for a spherical shell
(see, e.g., Chandrasekhar, 1961),

In forming the equations of motion considerable
simplification is afforded if the radius e replaces the
variable 7 when undifferentiated. This procedure is
accurate for shallow fluid layers, i.e., when d<<a. Taking
r=a-z, the equations of motion with » — a may be
written as

Du ?4,
Dt - a sinf
u
—(29—1— )[v cosf+(w sin®)* [+F.,, (1)
a sinf.
Dy po u v\ *
—= —~——+<2$H— )u Cos()—<~~) +F, (2)
Dt a @ siné a
Dw 7)2 *
LI
Dt a
u
—]—[29—!— jl(u sind)*+F,, (3)
a sinfé
with the heat transfer equation as
DT
——=FT: (4)
Dt

and the equation of mass conservation as

Uy

W,

(v sinf) 4

=0, (5)

@ sinf a sinf

where we have used the operator identity
Dq v u

—=q,+-qo+
Dt a

qs+wg.. (6)

@ sind

The hydrostatic pressure deviation has been written as
p=1"/po and the temperature deviation from 7'y as 7.
The formulation of the shallow atmosphere approxi-
mation 7 — a to the equations of motion for a fluid has
been discussed by Phillips (1966, 1968) and Veronis
(1968). It is customary in studies of the Earth’s global
circulation to omit the terms marked by an asterisk in
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Eqgs. (1)-(3). Phillips (1966) suggested that the omission
of these terms was consistent with introducing the
shallow atmosphere approximation as a geometric
approximation via the curvilinear scale factors and that
the resulting system of equations had consistent
conservation properties. Veronis, however, indicated
the error of such a formalistic approach in that the
approximated equations excluded certain dynamical
modes. Phillips (1968) then suggested that the approxi-
mation could be justified for stable atmospheres such
as the Earth’s.

As planetary atmospheres need not necessarily be
stable, and indeed the opposite is proposed for Jupiter,
the asterisk-marked terms will be retained for the
planetary-scale calculations. For a very shallow atmo-
sphere the asterisk terms are probably negligible. How-
ever, the equations will be applied to relatively deep
atmospheres (d/a=10"!) in which deep atmosphere
effects become active, although secondary. For such
calculations the shallow atmosphere approximation is
tending toward marginal validity. Because of the
inclusion of deeper atmosphere effects in Egs. (1)-(3),
the equations can be considered to form a “semi-
shallow” atmosphere approximation. For similar rea-
sons of generality the hydrostatic approximation is not
made. The asterisk terms are artificially omitted in the
laboratory-scale calculations so that shallow atmosphere
type convection can be investigated.

The form of the friction terms ¥ =(F, F, F,) varies
for the different calculations. The Navier-Stokes friction
form is used for the laboratory-scale calculations
(Section 3). The planetary-scale calculations utilize
eddy coefficients vy and »y, where the horizontal coeffi-
cient vy differs greatly from the vertical (vv) because of
the different length scales involved. The use of these
coefficients is based.on the assumption that the turbu-
lence can be regarded as being transversely isotropic.
The formulation of such friction terms and their shallow
atmosphere approximated form has been discussed
elsewhere (Williams, 1972). A more complex form of F
using mixing-length theory to parameterize turbulent
convection is discussed later in Section 6.

The following expressions for F are used in the general
planetary-scale convection calculations of Sections 3
and 4:

v % cos26 cotf
Fu=—<VH2u— +2v¢———>+uvu22, @)
a? sin%@ siné
vir cos26 cotd
F,=— VHZv—v———~2u¢——>—!—vv‘vzz, 8)
a? sinZ% sind
vy
sz__vllzw+Vszz; (9)
a?
where the horizontal operator
doe
Va*q= geo+gs cotd+— (10)
sin?f
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TasLe 1. Cases computed for laboratory-scale parameters. Constant parameter values are a=10 cm, d=1.5 cm, »=1.008X 102 ¢m?
sec!, k=142X107% cm? sec™), §=2.054X107* (°C)™?, ¢=981 cm sec™. Resolution was Az'=1/20, Af’=1/80. Notation is such that
letters A, B, D relate to given Rayleigh number value, integers to the rotation rate (multiplied by 10), and the letter S indicates the use
of the varying temperature distribution AT sin’ along the base, so that the parameters marked with asterisks denote maximum or equa-

torial values; parameters with daggers are given by the solutions.

7

AT Q

Case °C) (sec™) R Ta dr Rof Nut BinaxT
A0 0.05 0.0 2376 — — —_ 1.97 —
Al 0.05 0.1 2376 2.0X103 0.66 3.9X1073 1.52 18.3
A2 0.05 0.2 2376 8.0 102 0.47 1.8X1073 1.29 1.1
A2B 0.05 0.2 2376 8.0xX10? 0.47 1.5X 1073 1.30 1.3
A3 0.05 0.3 2376 2.0X 104 0.38 9.7X107? 1.20 0.8
A4 0.05 0.4 2376 3.2X10* 0.33 6.6X 197 1.14 0.5
A8 0.05 0.8 2376 1.3X10% 0.23 3.0X10™* 1.04 0.2
Al2 0.05 1.2 2376 2.9X10% 0.19 3.8X 1075 1.001 0.02
BO 0.1 0.0 4751 — — — 2.63 —
B2 0.1 0.2 4751 8.0X10% 0.47 2.1X107® 1.94 9.8
B4 0.1 0.4 4751 3.2X 104 0.33 -2.0X 10 1.50 1.7
B8 0.1 0.8 4751 1.3X10% 0.23 6.8X 10 1.25 0.9
B16 0.1 1.6 4751 5.1X 105 0.17 3.4X10™ 1.11 0.3
DO 0.2 0.0 9502 — — — 3.27 —
D10 0.2 1.0 9502 2.0X10° 0.21 9.6X10™4 1.55 1.8
D30 0.2 3.0 9502 1.8X% 108 0.12 3.1X10 1.15 0.5
SA0 0.05* 0.0 2376* — e — 1.71 0
SA2 0.05* 0.2 2376* 8.0 108 0.47 1.25% 1073 1.37 1.0
SA8 0.05* 0.8 2376* 1.3X 108 0.23 3.16X10™ 1.06 0.2
SA12 0.05* 1.2 2376* 2.9%X10° 0.19 3.11X107® 1.001 0.01

These equations reduce to the shallow approximated
Navier-Stokes forms if vy=vy=» as in Section 3.
Horizontal and vertical thermal diffusivities xg, kv are
used for (4) so that

(11)

Ky
FTZ*VHZT—l—KVTzz.
a?

Complex radiative transfers are omitted from (11) in
favor of the simpler thermal forcing. In a highly con-
vective atmosphere, heated by the planet’s interior,
details of the radiation balance of the atmosphere may
be of secondary dynamical importance, allowing a
simple model to be adequate.

The boundary conditions as used in the calculations
to express the state of the fluid at the boundaries are:

On the inner sphere, a state of no slip®:

w=v=u=0; p,=gT+vyw..; T=AT (12)
On the outer sphere, a state of free slip:
w=u,=v,=0; p.=0¢T; T=0 (13)
At the pole and equator:
v=wp=(u/sinf)y=0
z>E=<2Q-I— “ >u cosf (14)
a a sinf
Te=0

5 The complexity of the lower Jovian interface is ignored and
idealized as being just a stress bearing surface.

The procedure for solving the system of equations
(1)-(14) numerically is discussed in the Appendix.
Solutions are obtained as functions of space and time,
but we concentrate only on the final steady-state forms.
For most of the calculations, axisymmetric solutions are
obtained by suppressing the ¢-dependency in the above
equations. This allows examination of more points in
parameter space. However, some fully three-dimensional
calculations are made to examine the stability of the
axisymmetric modes and to examine the character of
transient disturbances.

Some pertinent non-dimensional parameters to be
calculated are:

(i) Raleigh number R=gBATd*/ (vyxy)
(ii) Taylor number Ta=40d*/vy?
(iii) Rossby number Ro=ttnax/ (2QL)
(iv) Ekman depth ratio dg=m(vy/Qd?)?
T/2
(T.).—0 sinfdb

d
(v) Nusselt number Nu=—

o
(vi) Barotropic stability = B=ug/ (22 sinb)
parameter

where L=an/2 is taken as the horizontal length scale.
Parameters (ii)—(iv) are global parameters which ignore
the cosf variation of @ and must be modified for
application to local regions.

3. General properties of shallow-layer convection
on a laboratory-scale sphere

To study the general behavior of convective insta-
bility in a spherical gravity field it would be informative



May 1973

to perform laboratory experiments to which we can
relate and form concepts under the simplest conditions.
This is impossible for the spherical configuration, and
experiments in the cylindrical system (Rossby, 1969)
are misleading for the spherical context because of the
absence of the important Q cosf variation. However,
hypothetical laboratory experiments can be conducted
by numerical integration of the equations for
laboratory-scale parameters.

a. Parameter values

The solutions are obtained to describe the flow of
water at 20C on a sphere of radius 10 cm with a depth
of 1.5 cm for values of the two variable parameters AT
and Q listed in Table 1. These parameter values lie in
the same range as those of Rossby’s (1969) cylindrical
system.

For convection in a Cartesian system with one free
and one rigid horizontal boundary, theory predicts that
instability will arise in a non-rotating system if the

~
\L \&\5\L—_//

@@@ QoIE

F1c. 1. Case AO: (i) streamfunction ¢ X 10° [cm? sec™!] defined
as wsind=yy/a, vsind=—y.; (ii) temperature 7X103)[°CJ;
(iit) vertical velocity wX 10® [cm sec™]; (iv) meridional velocity
9X10% [cm sec™]. Normalized coordinates are z'=z/d and R’
(==e/(1r/2)), the latter going from the pole (R’=0) to the equator

R'=1.0).
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vy

F16. 2. Case A2: (i) ¢ X10® [cm? sec™]; (if) 7102 [°C]; (iii)
#X10% [cm sec™1]; (iv) wX 103 [cm sec™]; (v) 9)X10% [cm sec™!].

Rayleigh number exceeds a critical value of R,=1100
(see, Chandrasekhar, 1961). With rotation present, the
critical Rayleigh number increases such that, for
example, it is doubled when the Taylor number
Ta=2X10% Thus, the lowest Rayleigh number cases
(set A) were chosen as having a Rayleigh number which
lies well but not excessively beyond the Q=0 critical
value. Set A provides the reference set of laboratory-
scale solutions.

The effects of increasing the Rayleigh number are
examined by doubling and quadrupling the Rayleigh
number of set A to give sets B and D. At even higher
Rayleigh numbers the convection becomes three-
dimensional and calculations for such values are
avoided as being inappropriate to the present study.
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In each set Q is increased from zero to examine its
effect in limiting the extent of the convection.

To examine how crucial the form of the base tempera-
ture distribution is to the type of flow produced, calcula-
tions are made with A7 sin% along the base (set SA).
All calculations were made by assuming an initial
condition of isothermal fluid at rest. A small random
disturbance induces cell development and integrations
to steadiness are completed.

b. Equation system

As Bénard cells have an aspect ratio (cell wavelength
to depth) of about 3, the overall aspect ratio L/d cannot
be made too large or a large number of cells would occur.
To examine such a system would be computationally
extravagant and, as we shall see later, of less relevance
to Jupiter. To yield a reasonable number of cells re-
quires L/d= 10.

ATMOSPHERIC SCIENCES

VorLume 30

However, for L/d=10, although the d<a approxima-
tion is still valid, the equatorial region of influence
(defined by the angle at which the tangent to the inner
sphere at the equator intersects the outer sphere) is
large (~25°). While such a configuration can produce
convection of interest (for deep solar atmospheres
perhaps) its form® is not related to planetary-scale
convection with its small equatorial region of influence.

This problem may be circumvented and the above
parameter values used to provide laboratory-scale
experiments to shallow planetary-type convection,
provided that the prediction equations are modified to
exclude the influence of the equatorial or deep atmo-
sphere type terms, i.e., @ sinf and related terms marked
by asterisks in Eqs. (1)-(3). Thus, these terms are
suppressed for the laboratory-scale calculations of this
section.

6 With rolls aligned parallel to the rotation axis.

W we* =1.205
we = L1922} 1= 3978
T+ = 23876 u* = 1219
1 T | m— T T T T T A T 1
0 fa) R 1 0 ®)
. ]
' J
¢] 0
w* =1.200 WwW* = 1106
T = 3.806 ™=a758
U* = 185} ut=0923
-1 T | B T T -1 — T T T T T T T ]
Y % R’ ¢ @ R

F1c. 3. Set A latitudinal profiles of normalized zonal velocity #=u/u* [cm sec™'] at z=d, normalized vertical velocity
w=w/w* [cm sec™'] at 2=4d/2, and normalized temperature 7/7T* [°C] at z=d/2. Variables are normalized with respect
to their extrema so that they never exceed +1. Normalizing constants w*, #*, T* are in units of 1072 Normalizing constants
are shown as moduli of negative values when extremum is a minimum ; otherwise, it is a maximum. Part (i) refers to the first

set of four panels, part (ii) to the second.
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¢. Discussion of solution set A

For a given set of parameters, two steady-state solu-
tions are possible for flow in a hemisphere, each differing
from the other by a half wavelength. The solution with
upflow at the equator will be defined as the positive
solution and that with downflow as the negative solu-
tion. In a global domain of integration, anti-symmetric
modes can also arise (see Section 5). For this section the
discussion will concentrate on the positive hemispheric
{(symmetric) mode.

The contours of two typical solutions, A0 and A2, one
without rotation and one with, are given in Figs. 1 and 2.
The convection in AQ is fairly uniform with latitude
R’'=6/(27) even though the streamfunction, reflecting
mass transport, decreases with increasing latitude.” The
presence of rotation (Fig. 2) suppresses convection in
higher latitudes because with the higher local Taylor
number in higher latitudes the critical Rayleigh number
exceeds the imposed Rayleigh number there. Thus,
convection is favored in the equatorial region.

7In a non-rotating system the axis of symmetry is arbitrary if
rolls exist, as the system has no preferred direction.
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Although convection is limited to the equatorial half
of the hemisphere in Fig. 2, a comparison with Fig. 1
indicates that the amplitude and shape of the equatorial
cell is unchanged by the rotation. The zonal flow
produced by the rotation [ Fig. 2 (iii) ] has a progression
at the equator for this positive solution and a regression
poleward of it, at upper levels. The regions of alternating
positive and negative zonal velocity jets are produced
by the thermal wind balance.

To display the remaining results concisely, latitudinal
profiles of # at z=d and w, T at z=d/2 are presented
in Figs. 3-6. The complete flow patterns are similar to
those in Figs. 1 and 2. The reference set A (Fig. 3)
illustrates most thoroughly the effect that increasing Q
has upon convection. When 2=0.1 (case A1) the maxi-
mum Taylor number of 2X10° (at the pole) is associ-
ated with a critical Rayleigh number whose value is
close to that imposed. Thus, in this case rotation just
suffices to dampen but not eliminate the convection in
the polar half of the hemisphere. As & is increased to
0.2 and 0.3, convection is suppressed in the polar region
and damping is extended toward lower latitudes. When

1
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F16. 4. Set B latitudinal profiles. Legend and units as in Iig. 3.

Q is raised to 0.4 (case A4) the equatorial progression
becomes a stronger zonal flow than its adjacent regres-
sion and a further increase of Q to 0.8 makes the zonal
motion a predominantly positive equatorial flow. The
maximum amplitudes of the variables do not vary much

with rotation when ©<0.8. However, increasing Q to
1.2 does not alter the basic flow pattern reached in A8
but the amplitude does become greatly diminished. This
indicates that the flow always consists of at least one
equatorial cell, never anything less, but that the ampli-
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tude of this cell gradually decreases with increasing
to reach complete flow extinction.

Fig. 3(1)d indicates that the negative solution A2B
has a similar latitudinal range but a weaker amplitude
than the corresponding positive solution A2.

d. Discussion of solution sets B and D

Increasing the Rayleigh number through values of
AT produces solutions (sets B and D, in Figs. 4 and 5)
similar to those of set A. The contours in the 2=0 case
DO display a different shape to those of A0 and BO,
indicating the presence of greater nonlinear activity as
the Rayleigh number increases toward values that
produce three-dimensional convective elements.

Comparing the three sets of solutions shows, for
example, that cases A8, B16 and D30 have similar
distributions and activity ranges. The amplitudes of
their variables vary approximately as AT and the
latitudinal range of activity as AT/Q, i.e., as R/Tal
Thus, whereas ¢ affects mainly the range of activity,
AT determines both the range and amplitude of the
convection.

The shape of the equatorial progression does not
alter over the parameter range of the solutions. Neither
does the size of the cells change very much with
increasing Rayleigh number. The Rossby number is
slightly lower than that observed for Jupiter.

e. Discussion of solution set SA

Specifying a latitudinal temperature variation
AT sin?) along the base introduces a #-varying Rayleigh
number. In the non-rotating case SAQ (Fig. 6) the
Rayleigh number has a value close to the 1100 critical
value at R'=0.5 so that convection only occurs in
the R'=0.5-1.0 range.

In cases with rotation, the latitudinal temperature
variation produces an additional positive zonal motion
in the subcritical region through the thermal wind
balance. For high rotation rates the combined effects
prevent the formation of the small negative zonal flow
and produce completely positive (but weak) zonal flow
at the top level.

1. Stability of the solutions

For the above solutions to exist physically, they must
be stable to disturbances in the ¢-direction. The study
of non-rotating, planar Bénard convection indicates
that for the Rayleigh numbers of the above solutions
that two-dimensional rolls are the preferred mode.
However, the analysis of Busse (1970) suggests that in
the rotating shallow-shell system, three-dimensional
cells are the preferred convective mode irrespective of
Rayleigh number. This latter analysis is limited to
small Taylor numbers. [ The analyses of Roberts (1968)
and Gilman (1972) for large Taylor numbers are not
applicable to the shallow-shell system.] To resolve the
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ambiguity between the Cartesian and Busse results we
carried out three-dimensional integrations, discussed
below, which show that the Busse results only hold for
very small rotation effects and do not apply to our flows
where rotation effects are large and sufficiently
dominant to suppress convection in some regions.

It would seem that we could obtain a rough estimate
of the validity of Busse’s theory and of the axisymmetric
theory by evaluating the barotropic instability criterion
for the solutions. This instability can arise because the
rotation produces shears between the positive and
negative zonal jets. The criterion for the instability to
occur is that the relative vorticity parameter,?
B=u4/(2Qa sind), pass through the value 1.0 (Kuo,
1949). The criterion B was calculated as a function of 8
for the upper surface zonal velocity of all solutions, as
shown in Fig. 7. The maximum values of B are listed
in Table 1. These values suggest that the lower the
rotation rate, the higher the value of B and the greater
the possibility of instability. The case A2 represents a
marginal state for the set A flows as cases with ©>0.2
are barotropically stable whereas those with 0<2<0.2
are unstable. These results suggest that axisymmetric
convection cannot exist poleward of 45° for the set A
flows (the range of A2) and that axisymmetric convec-
tion is essentially an equatorial phenomenon.

However, the barotropic instability criterion is
derived for a frictionless fluid so that values of B may

8 An approximate form for spherical geometry.
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not be an accurate predictor of instability in a real fluid.
To resolve the issue more definitively, we test the
stability of some key flows by three-dimensional (3-D)
integration. To make the test, the axisymmetric solution
is significantly disturbed by adding a random (in 4, ¢, z)
distribution with an amplitude of 0.2 AT to the tem-
perature field. Then the 3-D integration is continued
for a length of time comparable to the time scale for
the formation of the steady axisymmetric solution.
The 3-D calculations indicate that the axisymmetric
flows A2 and A1l are stable so there is no doubt that
such flows can exist physically. However, we have also
found stable 3-D solutions at the same parameter
values. The solutions are essentially combinations of
the positive and negative axisymmetric solutions. This
degeneracy of uniqueness—a characteristic of Bénard
convection—greatly complicates the question of sta-
bility. For the flow Al, the B parameter reaches a
value of 18 near the pole and has a value of 2 over
most of the sphere, yet the flow remains stable. We
must therefore conclude that in these flows the friction
is sufficiently large to prevent the growth of barotropic

instability and that the parameter B is not a good guide
to laboratory-scale flow stability.

To try to find a flow to which Busse’s analysis might
apply, we have made 3-D calculations with very small
values of Q starting from initial conditions of no motion.
Since these motions do seem to be 3-D, we must there-
fore conclude that Busse’s analysis is valid only for very
small Taylor numbers and thus does not apply to the
flows considered in this paper. The axisymmetric flows
of this paper are geostrophic with low Rossby numbers,
whereas the Busse flows have zonal motions that are
predominantly inertially produced.

g. Conclusions from laboratory-scale calculations

The flows depicted in the above solutions, although
simple, possess in some cases common characteristics
with the Jupiter circulations. Related features are
1) the axisymmetric banded pattern (e.g., Fig. 2),
2) the same differential rotation of the w>0 zones and
w<0 belts, and 3) a jet-like tropical zonal flow in high-
rotation cases. The existence of stable axisymmetric
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convection only at higher rotation rates, and then only
equatorward, is consistent with the observed uniformity
of the planetary polar regions.

Apart from certain atmospheric similarities, the
following general results emerge:

1) A tropical ‘“jet” can be produced by a stable
axisymmetric flow [ Fig. 3(ii)c].

2) Axisymmetric flow is favored in higher rotation
cases and their associated equatorward confined regions
of activity.

3) The variation of Qcosf in the Taylor number
aligns the rolls parallel to the equator by producing
higher Taylor numbers and then greater convection
suppression at higher latitudes.

4) The range of convective activity is determined
by R/Ta? and the maximum amplitude of the convec-
tion by R.

4. Basic planetary-scale convection

There is, of course, a great deal of difference between
the flow of the simple hypothetical laboratory cases of
Section 3 and the actual Jovian circulations. However,
the similarities lead us to inquire whether such con-
vective modes can organize themselves and be recon-
structed on a planetary scale and whether the required
formulation is a reasonable representation of the real
turbulent process. These questions will be considered
in this and the following two sections.

a. Transversely-isotropic convective instability: Linear
theory

To produce flows like A2 on a planetary scale the
fluid has to form convective cells whose horizontal
length scale is much greater than their vertical length
scale. If the zone-belt structure is an indication of large
convection cells, then the cell aspect ratio v is of the
order of 200 when the depth is 100 km. The atmosphere
has an overall aspect ratio of O(10?).

Although classical convection theory for laminar
motion and the solutions in Section 3 predict a cell
aspect ratio =3, it can be shown that the aspect ratio
can be altered when the fluid has non-isotropic diffusi-
vities. Linearized perturbation analysis for the non-
isotropic convection problem (Williams, 1972) gives
that the cell aspect ratio is y=2m?, where vy =mvy and
kr=mxy with m being the relative mixing factor. (This
result for free slip boundaries in a non-rotating Cartesian
system indicates the general behavior.) The associated
critical Rayleigh number is R,=4n*n.

In a shallow atmosphere the horizontal length scale
is much larger than the vertical, and it is customary to
invoke eddy diffusivities such that vy >>vy, ie., m is
large. Such diffusivities could therefore produce the
desired elongated cells. However, it has not been
possible to establish whether such diffusivities are a
valid representation of the multi-scale mixing of a
turbulent convective atmosphere. This problem of
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turbulence theory will be discussed later (Section 6),
and for present purposes we invoke the validity of the
eddy diffusivities and apply formally the system of
Eqgs. (7)-(11) to Jupiter-scale calculations.

b. Parameler selection routine

In designing the calculations, values must be chosen
for the parameters

a, g, Q, T(), 6, d, AT, vi, Vv, Kg, Kvy.

For Jupiter, a=7X10* km, g=2.6X10"2 km sec™2, and
2=1.76X10"* sec! are well-established values. (The
unit of length of the parameters and variables is taken
in the calculations to be the kilometer because of the
large values involved). The effective planetary tem-
perature is estimated to be 130K, and such a value is
taken for 7 to give B=T;'=8X10~* (°K)~! as the
expansion coefficient.

Since the atmospheric depth d remains an unknown
quantity, solutions will be obtained with values of d
within the speculated range d=20, 50, 100, 500, 1000
and 5000 km. To make these calculations, which include
cases with relatively deep atmospheres, the asterisk
terms in (1)-(3) are retained and the full axisymmetric
equations integrated each time.

For an assumed d, values of AT, vg, vy, &z, xy must
then be selected. There are no observational estimates
for these parameters so their values must be deduced
by indirect inference using our theoretical framework.

Consider the quantitative data items that are
available:

1) The range of maximum activity spans §=70°-90°.
This provides an approximate mean latitude measure
8 for this region given by cos™ 0.1.

2) The equatorial progression and its adjacent
regression have a width of Lg= 25,000 km.
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TasLE 2. Cases computed for basic planetary convection. Letters A, B, C, etc., denote increasing fluid depth. Calculations use Jovian
geometric configuration, i.e., a=7X10* km, =1.76X 1074 sec?, g=2.6X 1072 km sec™?, 3=8x107% (°C)~%. Ta=7.7X10% and dz=0.15
are constant. Cases PC and PE are solved for positive and negative flow. Ro=t#max/(2QL,), where L= awr/4. The domain of integration
is 45°—90° except for PF which is 0°—90°. Values with daggers are those given by solutions.

Resolu-

d AT vy, Ky UmaxT tion

Case (km) (°K) (km? sec™) m R Nut (km sec™) Rot Braxt 6,z
PA 20 150 1.6X 104 3 X108 9.8X10° 1.17 0.108 5.6 1073 0.98 40, 32
PB 50 60 1.0X1073 5 X105 1.6X10° 1.13 0.098 5.0 1073 0.79 60, 32

PC{+ [1.14 0.091 5.0X107® 0.81

— 100 30 4.0X1073 1.25X 105 3.9%108 11.19 —0.124 6.4X 1073 0.59 40, 32
PD 500 6 0.1 5 X108 1.6X 107 1.12 0.082 4.2X1073 0.62 40, 32
PE{+ 1.16 0.099 5.1X1073 0.83 .
— 1000 3.5 0.4 1.25%X103 4.6X 108 1.14 —0.133 6.9X 1072 0.74 40, 32
PF 5000 3 10.0 50 7.8X10° 1.28 —0.367 1.9X1073 4.40 80, 32

3) The tropical jet has an amplitude of 0.1 km sec™.
4) The variation of » with latitude at cloud level has

a definitive profile (Chapman, 1969).

The above data can be used to estimate parameter
values if the results of linear anisotropic convective
instability theory are invoked. Since observational

evidence is insufficiently sensitive to infer the Prandtl
number, ¢ =v/k, values are therefore taken to be unity,
1.e., vg=kg=mvy. The linear theory predicts that for
high Taylor numbers the cell wavelength-to-depth
aspect ratio is given by vy=2mmiTy !, where T'g
=Ta cos®g defines a local Taylor number on the

! 1
0 0
W* = 1962 w* = 4188
T = 9009 T+ = 3.636
u* =1.077 U* = 9.759
1 T B T
0.5 06 0.5 06
{a) (b)
1 ]
0 0
v
we =g we = 3.607 ‘-"-\ .";
T =1.825 T = 3.666 ’
"ur=en2 U =8174
A - T— T 4 T 1
0.5 06 08 10 05 0.6 08 1.0

{c)

Rl

(d) R'

F1c. 8. Set P planetary-scale cases: latitudinal profiles of #/#* [km sec™] at z=d and w/w* [km sec*], T/T* [°C] at
z=d/2. Units of w*, T*, u*, respectively, are for Fig. 8(i) : a. 104, 10, 10~1; b. 107, 10,1072; c. 107, 10, 1072; d. 1073, 1, 10°2;
and for Fig. 8(ii): a. 1073, 1, 102; b. 103, 1, 1071; c. 1072, 1, 107,
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Fic. 8. (continued).

sphere. If Lg/d is a measure of the planetary v, then
we have
Tgt/Lp\?
e
472\ d

so that m is known in terms of »y. Data items 1) and 2)
from above are required in (15).

Furthermore, the limited range of convective activity
indicates that the Rayleigh number for the large-scale
mean motion is close to the critical value for the given
Taylor number as the flow becomes subcritical at the
end of the activity range. From linear theory,
R.=2n'mTg* for a free-free boundary system. For a
rigid-free boundary system we assume that the situation
resembles the classical Bénard one and introduce a fac-
tor of 2 so that R.=4x*mT g% Substituting R and Ta
into this R, equation gives

(15)

4Q2
dAT =—Lg? cos?0g,
Bg

(16)

with the unknown »y canceling out. Data items 1) and
2) and the ¢=1 assumption also enter (16) and for an
assurned d provide an estimate for AT. Eq. (16) also
indicates that JAT is a constant, a result also suggested
by Stone (1967) and Ingersoll and Cuzzi (1969) but for
a completely different reason (namely the thermal
wind balance) and for a¢AyT rather than for eAyT as
in this case.

The above argument indicates that for a given depth
there is but one free parameter, vy, within the observa-
tional and theoretical framework. However, data items
3) and 4) have not yet been used. Although these data
cannot provide a direct estimate of vy, item 3) can be
used a posteriori to improve an initial guess. A first
approximation to vy can be taken to be such that the
grid Reynolds number Re=wAz/vy is of the order unity,
and in practice item 3) is needed to give a value
of w.

The routine for estimating parameter values provides
only a first approximation to their values because the
quantity 0z is ill-defined and the procedure is based on
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a limited linear theory. However, the routine does form
a good first step from which to iterate the parameters
toward values giving more realistic solutions.

The observational item 4), on the shape of the
profile, is not used in determining parameter values and
so remains as the main test of the solutions. If alterna-
tive observations had been available, the parameter
selection procedure would have followed a different
logie, e.g., if AT is known, Eq. (16) gives an estimate
for d.

¢. Parameter values

Solutions were obtained for the range of parameter
values listed in Table 2. These values were chosen to be
related to parameters of a reference case PB. This case
was taken to be the basic one as its depth, 50 km,
seemed to represent the most realistic estimate of the
planetary-scale height.

The routine of Section 4b provided the parameter
values for PB. To estimate vy from the grid Reynolds
number Re=wAz/vy=1, w is taken from the conserva-
tion equation to be w=wud/Lg so that vy=udAzLg™
== 1073 km? sec™*. Then with a value of vy,=1X1073
km? sec™!, we obtain from Eqs. (15) and (16) m=~5X10°
and AT7T=60K. Calculations made with parameter
values so estimated, provide a realistic zonal velocity
maximum of 0.1 km sec™! and are maintained as the
final choice for case PB. No iteration of parameters is
necessary but this is fortuitous in view of the ill-defined
0k quantity.
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The parameter values for the other cases in Table 1
are derived from the PB values by keeping dAT and Ta
constant. This gives vy and AT values in terms of the
PB values. The resulting solutions then all have a
maximum #=0.1 km sec™! because of (16) and a thermal
wind balance. One exception to this was the case PF
where a higher temperature than that predicted by
dAT =constant is necessary to make the flow critical.
The difference is due to the fact that at the depth of
case PF the flow exhibits a different convective mode,
that discussed by Busse (1970) and Gilman (1972), for
which the linear theory no longer applies.

d. Discussion of solution set P

The solutions for the cases of Table 2 are shown in
Figs. 8-11. The flows of PA, PB, PC, PD are similar in
most respects [Fig. 8(i)], so that only the reference
case PB requires detailed attention. Its contours are
given in Fig. 9. Case PD with its smaller # value at the
equator is indicative of a transition to the PE flow tvpe
that occurs as the depth and the influence of the
equatorial region through the Qsinf terms increases.
At a depth of 5000 km the flow PF enters a completely
different convective regime, one that is associated with
a deep atmosphere [Fig. 8(ii)c].

The PE contours (Fig. 10) display a slight vertical
sloping, a characteristic which is more apparent in the
deep convection flow PF (Fig. 11). The positive and
negative solutions PE, PE— indicate that a strong

U
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0 — i
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F1c. 9. Case PB: contours in equatorial region of (1)¥X10! [km? sec™']; (ii) #X10? [km sec™'];
(i) T [°CT; (iv) wX 10 [km sec1].
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positive equatorial zonal flow cannot be produced for parallel to the rotation axis in the equatorial region. Of

this atmospheric depth.

the P set, only the flow PF could be barotropically

For the deepest atmosphere (PF) only one solution unstable (B=~4.0), and the enforced axisymmetry could
exists and it has negative equator values of # and w explain the singular difficulties encountered in obtaining

[Figs. 8(ii)c and 117. The cellular rolls tend to slope a steady solution for this case.

il

1

0.5 R 10
(i)

(i)

K16, 11. Case PF: (i) X107 [km? sec]; (i) 10 [km sec™J; (iii)
TX10 [°CT; (iv) ©X10% [km sec™'].
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We conclude that for these solutions to be relevant
to Jupiter the active atmosphere must be relatively
shallow, i.e., <500 km. In the remaining calculations,
d=50 km is taken as a representative estimate. How-
ever, the similarity of the solutions for d=20—500 km
means that the results can be quantitatively modified
by changing d within this range.

e. Dynamics of the reference case PB

Comparison of the zonal velocity profile of case PB
with that of Jupiter in Fig. 13(b), curve A, reveals
similar jet widths and amplitudes. The PB flow consists
of an upper level positive zonal flow and lower level
negative zonal flow in R'=0.9-1.0 [Fig. 9(ii)]. The
flow is barotropically stable. The meridional flow con-
sists mainly of a single large direct cell in R’=0.9-1.0
and of weaker cells to the north of it.

The dynamical maintenance of the PB flow can be
gauged from the balance of the representative com-
ponent terms of the basic equations (Fig. 12). The w,
components are omitted because the flow is in an
approximately hydrostatic balance. The components
of the 77, equation simply reflect the basic ¢, T patterns
and the balance of linear theory. The v, components
show that the meridional motion produces a pressure
gradient pg/¢ which maintains the cell against dissipa-
tion and Coriolis deflection. The #; components
demonstrate that the jet maximum at R'=0.95 is
produced by Coriolis deflection of the meridional flow.
This jet maximum is held in equilibrium by a diffusion
which is mostly transferring momentum laterally
through the term »guee/a® to maintain the zonal
velocity at the equator. '

The overall flow arrangement indicated by the
balances is one in which a large convective cell is set up
in R'=0.9-1.0. Coriolis forces then deflect this cell to
produce a zonal velocity maximum at R’=0.93 at the
upper level and a zonal velocity minimum at the base.
Lateral mixing then acts to drag the fluid at the equator
along with the jet just poleward of it. This produces a
fairly flat # profile in R'=0.9-1.0.

The related angular momentum balance is straight-
forward. The main cell transports angular momentum
upward from the source in the negative zonal flow at
the base R'=0.9-1.0 region (Fig. 9) to the upper level
jet at the base R’=0.9-1.0 region (Fig. 9) to the upper
level jet at R’=0.93. This source maintains the maxi-
mum # against diffusive transfer to the equator and
against transfer to the sink region in the positive zonal
velocity flow at the base R'=0.8-0.9 region. The
balancing of source and sink at the base provide global
equilibrium.

The damped sinusoidal variation of the various
component terms in Fig. 12 suggest that the simple
instability mode of linear theory determines the shape
of the steady-state flow pattern.
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F1c. 13a. Comparison of the best zonal velocity latitudinal pro-
file at z=d produced by the linear viscosity model, case PBJ, and
the mean observed profiles, after Chapman (1969). Letters de-
note U (solution), N (Northern Hemisphere data) S (Southern
Hemisphere data). Units are km sec™’. Fic. 13b. Comparison of
the zonal velocity latitudinal profiles at z=d produced by the set
of multiple solution PBM with the observed Southern Hemisphere
profile, after Chapman (1969). Units are km sec™™.

5. Specific planetary-scale solutions

Having seen that flows with some Jovian character-
istics can be produced by the linear eddy viscosity
model, we now consider how close a solution to the
observed flow can be obtained with this model and how
sensitive the solutions are to the choice of parameter
values and boundary conditions.

a. Comparative solutions for Jupiter

The observed « profiles have significant hemispheric
differences as shown in Fig. 13a. As the comparison in
this section involves mainly the tropical jet, either
hemispheric profile is appropriate but the southern one
is chosen because of its simpler form (Fig. 13b).

The jet of the reference case PB (=PBM.A) is
deficient in its width and shape compared to the ob-
served, having a marked decline from its peak at
R'=0.93 to the equator (Fig. 13b). Eq. (15) suggests
that a wider jet can be obtained by increasing the rela-
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TaBre 3. Specific planetary scale cases, where G indicates global domain, S the presence of secondary heating, M the multiple cases

changing only AT and m, and J refers to the case closest to Jupiter.

All cases take Jovian geometry as a=7X10* km, d=50 km, 2=1.76

X107 sec™!, g=2.6X1072 km sec™?, 3=8X107 (°K). Constant parameter values are yy =1X10"3 km? sec™?, Ta=7.7X10% dr=0.15.

The function f(8) =0 except for 80° <8 <100° where f(6)=sin208.

HUmax Resolu-
AT (km i tion
Case (°K) n R Nu Ro sec™)) B f range 0,z Comments
PBM.A 60  5X105 1.6X10° 116 5.0X107® 0.10 0.8 45°-90° 40,22 Parameter spread about
Jupiter profile
PBM.B 90 7X10° 23X10° 1.13 5.8X10°® 0.11 0.7  45°-90° 40,22
PBM.C . 135 108 3.5X10° 1.09 5.8X1073 0.11 0.5 45°- 90° 40, 22
PBM.D 140  10° 3.6X10°  1.13  6.8X1078 0.13 0.6  45°-90° 40,22
PBM.E 155 108 39x10° 119 8.1X10°3 0.16 0.8 45°-90° 40,22 .
PBJ 133 108 3.5%X10°  1.07 54X107® 0.10 0.5 45°-90° 40,22  Case closest to Jupiter
PBGI1 60 SX10° 1.6X10° 1.14  5.2X107° 0.10 0.8 45°-135° 80,22  Global symmetric mode
PBG2 60 S5X105 1.6X10° 134 52X107* —0.10 1.2  45°-135° 80,22  Global anti-sym-
metric mode
PBS1 60f S5X105  1.6X10° — 6.2X 1078 0.12 1.5 45°-135° 80,22 1Base T=ATf(0)
(max)
PBS2 60f SX10° 1.6-23 — 9.5X 1073 0.18 1.3 45°-135° 80,22 {Base T=ATH+ATf(6)/2
X 10° (symmetric mode)
PBS3 60 Sx105  1.6-3.1 — 1.4X102 0.27 2.0 45°-135° 80,22 9 Base T=AT+ATf(6)
X10° (anti-symmetric mode)

tive mixing factor m. The results of four calculations
with increasing m values, as listed in Table 3, are shown
in Fig. 13b; AT is also increased to achieve the larger
critical Rayleigh number of these cases but other
parameters remain constant.

The # profiles show that the jet width is a function
of m only with curves C, D, E intersecting the axis at
the same point. Comparing these three curves, a con-
stant m indicates that a larger AT produces a larger
maximum # but also a more peaked profile. Of all these
cases only C has a flat jet profile in R'=0.93-1.0.

The result that emerges from Fig. 13b is that there
is an inter-relationship between the jet width, amplitude
and shape. It would not be possible to satisfy these
three criteria with two variable parameter values unless
this inter-relationship existed, and for this association
to be correctly simulated the model has to be realistic.
Thus, for example, only when the computed jet has the
same width and amplitude as the observed can it also
have the same shape. This freedom in the system and
the ability of the model to achieve a self-determined
shape suggests that the model may well be realistic.

The most realistic solution PB] (Fig. 13a) coincides
with the observed Southern Hemisphere profile to
within the limit of observational errors in R'=0.8-1.0.
The temperature differential of A7=133K would be
different if ¢ differed and a non-Boussinesq compressible
system was used. This uncertainty plus the fact that
the Boussinesq temperature corresponds to the atmo-
spheric potential temperature makes quantitative
comparisons with the planet impossible.

Despite agreement between the equatorial # distribu-
tions, the comparison with Northern Hemisphere data
is poor in the R'=0.5-0.8 region and the predicted w
bands are too weak in that region. This deficiency will
be reduced by the model to be discussed in Section 6.

Although the flow PB] is barotropically stable, a 3-D
calculation shows that the convective rolls are unstable
and that cells are the preferred mode. This matter is
discussed further in Section 7.

b. Global mode selection

The possibility of realizing both positive and negative
solutions in a global domain allows either a symmetric
or antisymmetric mode to occur. Such modes for the
global cases PBG1, PBG2 corresponding to the hemi-
spheric reference case PB are illustrated in Figs. 14-16.

- To find out whether the fluid has a preferred mode,
calculations were made for multiple R and Ta values in
the region of PB values from subcritical to critical flow.
Both symmetric and antisymmetric modes exist
together initially and although the final solution should
depend on which mode has the faster growth rate, the
rates seem indistinguishable so that the final flow mode
is somewhat arbitrary.

If the growth rates do not select the mode then some
other mechanism must, whether it be secondary heating
effects or the 3-D aspect of the motion. The barotropic
instability condition shows that antisymmetric motion
is less stable. The antisymmetric mode also requires a
wider latitudinal range for its existence. Although these
two points suggest that the antisymmetric mode is less
likely to exist, the problem requires further examination.

Observations of Jupiter indicate the presence of a
symmetric flow system. However, it is possible that the
antisymmetric mode could be activated to give some
of the transient features of the atmosphere, e.g., the
changing band structure. The full contours of both
modes (Figs. 15 and 16) are representative of how much
the linear viscosity model can produce. Additional
contours have been added for PBG1 to illustrate the
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F1c. 14. Latitadinal profiles of normalized basic variables w/ w*, T/T*, u/u* for global cases PBG1, PBG2, Equator is at R’
=1.0. Normalized variables have units of 10~ km sec™* for w, 10C for T, and 1072 km sec™? for u.

weaker extra-equatorial motions and band structure.
The most striking feature of the antisymmetric flow is
its large trans-equatorial cell.

¢. Secondary heating effects

It is possible that Jupiter could have some latitudinal
variation in its basic heating field. These variations
could be complex, being caused by external (solar) and
secondary internal heating mechanisms. To examine
crudely the possible dynamical effects of such variations
on an unstable atmosphere, three PBS solutions are
obtained for which the temperature imposed along the
base is of the form AT+ATf(8), where 0< f(6)<1 is
defined in Table 3. The first term represents the primary
heating source and the second represents 1) the effect of
enhanced solar heating at the equator, although depend-
ing on the cloud structure the enhancement might be
better applied at e.g. 6=80°; and 2) the effect of heating
anomalies in the planetary interior caused by the
extraction by the atmosphere of more heat in the
equatorial region. The AT term produces the convective
mode whereas ATf(f) produces Hadley-type flow
through the variation df/dé.

The flow produced by the secondary heating function
AT f(6) alone has the form of a broad flat jet (solar like)
centered over the equator (PBS1, Fig. 17a). The
second case (PBS2), with the mixed primary and
secondary heating, has a split jet and weak zonal flow
at the equator. The absence of any negative zonal flow
at z=d in both solutions suggests that secondary heat-
ing sources of this type must be uninfluential on the
planet.

The case PBS3 was designed to test the dominance of
the convective mode. Given an established antisym-
metric mode, the symmetric secondary heat source was
added to see if it could induce a symmetric mode to take
its place. Fig. 17c shows that it could not, even for a

comparable heating strength. Similarly, we can expect
that antisymmetric secondary heating effects, if they
could exist, would not affect the symmetric convective
flow. Thus, the basic flow is determined by primary
instability characteristics which are dominant and en-
trenched, once established, and are not susceptible to
secondary influences.

6. Planetary-scale thermal convection

In this section we would like to discuss the two main
unresolved questions; namely, how we can justify the
use of eddy diffusion coefficients in a gross representa-
tion of thermal convection on a rotating planet and how
should the turbulence be more fully represented so that
more realistic models can be developed in a progression
toward a simulation of Jupiter’s atmosphere. Our
discussion will be inconclusive.

a. Thermal turbulence

Although thermal turbulence is discussed in many
problems on the laboratory, planetary and solar scale,
little progress has been made toward a general theory
for this phenomenon.

On the laboratory scale, Kraichnan (1962) has
provided a reasonable explanation of isotropic thermal
turbulence by the use of eddy diffusivities in a mixing-
length theory. Experiments on anisotropic thermal
turbulence have been made by Deardorff and Willis
(1967) who examined the flow between two large
horizontal plates with a narrow gap, a system with a
horizontal isotropy comparable to that of a shallow
atmosphere. These experiments revealed that thermal
turbulence in a shallow system is not random but
exhibits “cyclic structures” reminiscent of convection
cells. Elongated “cells” with aspect ratios up to 135
were observed. This result provides some justification
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Fic. 15. Contours of the symmetric global mode of PBG1 from 45°-135° latitude: (i) ¢ X 10
[km? sec™]; (ii) 71071 [°C]; (iii) #X 102 [km sec']; (iv) X104 [km sec']. Dashed and
dotted contours indicate a smaller contour interval for less active regions.

for the use of eddy viscosities to give the elongated
cells in Sections 4 and 5.

The existence of granulation and mean circulations in
the solar atmosphere also suggest that at very high
Rayleigh numbers thermal turbulence is not random
but that an eddy field can be established such that
regular cell patterns appear. Eddy diffusivities would
seem to be a viable approximation for such a system.

The re-establishment of order in the turbulent field
would seem -to require a very large Rayleigh number
and scale variation. That Jovian convection might be
a sub-form of stellar convection would be consistent
with the pseudo-stellar composition of the planet.

On the planetary scale, thermal turbulence acts as
the formulative process in hurricanes and in the inter-
tropical convergence zone (ITCZ). In these phenomena,

VoLUMJE 30
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the hypothesis that the smaller scale convective ele-
ments (cumuli) organize in such a way as to drive the
large-scale circulation has been reasonably well estab-
lished (Ooyama, 1969; Charney, 1970). This scale
interaction is made possible by the CISK® mechanism

9 Conditional instability of the second kind (Charney and
Eliassen, 1965).

which relies on latent heat release for its existence. As
this process cannot be assumed to occur on other
planets, it is not advisable to extrapolate these ideas to
a remote planet. Despite this, it does appear that the
ITCZ offers evidence of the existence of a type of
convective-scale interaction comparable to that required
to explain the Jovian characteristics.
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Fic. 17. Latitudinal profiles of normalized variables for three global cases with variable heating at z=0: (a) PBS1 has
AT (), (b) PBS2 has AT+ (AT/2) (@), (c) PBS3 has an antisymmetric mode with AT+AT f(@). Normalized variables have

units of 107* km sec™* for w, 10C for T, 107 km sec™ for u.

b. Character of Jovian turbulence

If we regard the solution PBJ (Fig. 15) as being a
rough guide to the Jovian circulation, then the turbu-
lence on that planet must be considered as being a
mixture of shear and thermally driven turbulence.
Although there may well ‘exist boundary layers or free
layers where one turbulence form predominates, it is
not clear which is the dominant process.

The banded structure of Jupiter indicates that the
large-scale mean motion is predominantly axisymmetric
but that the smaller scale motions within the bands are
more three-dimensional. The orderliness of the mean
circulation implies that the main energy input to the
motion occurs at a medium size (latitudinal) wave-
number~35. In the Earth’s extratropical atmosphere, a
comparable orderliness in the circulation is produced
by the baroclinic instability mechanism releasing
potential energy at wavenumber 6 to produce the
wavelike structures. However, there could be a signifi-

cant difference between the ordering modes and the
associated turbulence of the Earth and Jupiter if
convective instability controls the latter planet. For
whereas the baroclinic instability mechanism is inde-
pendent of the turbulence characteristics, i.e., is quasi-
linear, the convective mode depends crucially upon
assumptions about the turbulence field. The fact that
the magnitude of the eddy coefficients determines the
wavelength of the bands (in a shallow atmosphere)
leaves the convective instability theory on a less
satisfying basis than the baroclinic instability theory
of the Earth’s extratropics but on a comparable basis
to theories for the Earth’s tropical circulations. A
similar situation occurs or has occurred in studies of
the solar circulation, hurricanes, and the tropical
circulation in that the baroclinic and convective modes
vie in providing an explanation.

The most difficult aspect involved with the convective

‘mode theory for Jupiter is in explaining how the

characteristic scale of the large-scale circulation is
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determined. It is apparently produced by the collective
behavior of the small-scale elements acting through a
nonlinear scale-interaction effect which cannot be
explained by linear theory. The most familiar example
of a scale-interaction phenomenon is that of Bénard
convection. In that system the properties of the convec-
tion are determined by the molecular properties of the
fluid acting in parameterized form through the viscosity
and conductivity. Just as on the planetary scale, so in
Bénard flow it would seem unlikely intuitively (Gf we
were unaware of the Bénard experiments or Rayleigh’s
analysis) that the molecular behavior of the fluid would
produce not a random transfer but a mean cellular
convection. Tt is less satisfying, however, to have to
accept that the Jovian band widths may be determined
by the collective action of convection elements that
cannot be observed.

c. Parameterization of Jovian turbulence

The main problem in treating turbulence on a
planetary scale lies in properly representing the inter-
action between the smaller and larger scales of activity.
When the turbulence is thermally driven the problem is
even more difficult because the main concern is then
with the larger scales of motion and with the cascade
of thermal energy so that the simplifying ideas of
Kolmogoroff and Heisenberg no longer apply.

The gross austausch coefficients used in Sections 4
and 5 provide the simplest parameterization or closing
procedure for turbulent transports. For an unobserved
atmosphere it is hard to justify using anything other
than the simplest closing procedure in an initial study.
The use of these coefficients implies that the main
purpose of the small-scale convective elements is to act
collectively as an eddy conductivity to transfer thermal
energy to the atmosphere. The eddy coefficients embody
many {(unobservable) physical processes, e.g., convec-
tive cloud behavior, that eventually deserve a more
meaningful treatment. At this initial stage, however,
we have assumed that the eddy coefficients are (in-
directly) measurable quantities just as are the laminar
coefficients. However, we do so with the proviso that
such quantities can and should be derivable from the
smaller scale properties in the same way that the
laminar coefficients can be related to the molecular
properties, namely through statistical mechanical
equations.

The next level of turbulence theory involves using the
mixing-length concept. Such theories give reasonable
results in solar turbulence but a complete formulation
for thermal or mixed turbulence is unknown. Kraichnan
(1964) has pointed out that mixing-length theories are
only strictly consistent when the local mixing lengths
are much smaller than the length scales related to
spatial variations in the mean flow. This condition is
not well satisfied in thermal convection so agreement
between theory and experiment is unsatisfactory.
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Despite this, the theoretical approach to solar convec-

‘tion has been predominantly based on mixing-length

theory and has met with limited success (Spiegel, 1966,
1971).

The derivations of more specialized parameterizations
for convective-scale interacting phenomena have been
given for the planetary-scale systems, e.g., by Ooyama
(1969) for the hurricane and Charney (1970) for the
ITCZ. These formulations are based on a knowledge of
the energetics, path lengths, and population character-
istics of the observed convective clusters. While this
type of theory is vital to meteorology, it does not as yet
provide a generalized approach to thermal turbulence
problems, as it does not use general Reynolds or
Boltzman equations and is completely oriented toward
the non-universal condensation process.

The simplest, most general mixing-length parame-
terization of shear-driven turbulence assumes a closing
procedure in which the stresses are taken to be propor-
tional to the local velocity deformation D, i.e.,

1

= —u'u; —f'gﬁikuk'uk' = ;D,

(A7)

where K is an eddy coefficient tensor (Hinze, 1959,
p- 21) and '

ou; c')u,-
D=—-+4—.
axj dx;

(18)

For the numerical simulation of isotropic turbulence,
the present practice (Deardorff, 1971) is to take K as
being given by

K=r|D|, (19)

where ! corresponds to a mixing length in this generaliza-
tion of Prandtl’s theory. Deardorff (1971) has suggested
that (19) also holds for thermal turbulence without
modifying / to allow for enhancement of mixing by
thermal instability as is generally done in solar convec-
tion studies.

For the anisotropic Jovian turbulence the formulation
(19) may be inappropriate. However, as it represents
the simplest general mixing-length parameterization,
we will assume that the free atmosphere is dominated
by shearing turbulence so that a parameterization
similar to that for turbulence in the Earth’s atmosphere
(Smagorinsky, 1963) may be used. This allows us to
work in terms of known parameters. A separate bound-
ary formulation is not used at this stage as it is prefer-
able initially to let the free atmosphere define its own
boundary layers. Thus, for axisymmetric flow the
turbulent transports are written (Williams, 1972):

F,=

[K 1 sin®0(u/sinf)e Jo+ (Kvue,)., (20)

a® sin’%f
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F,=———[ Ky sin®0(v/sind)s Jo+(Kvv.)., (21)
a?sin?%
F,= - (KV Sin0w0)9+(Ksz)z; (22)
a?siné
Fp=—o (K g SinBTo)o‘f‘(KVTz)z, (23)
a? sinf
where
KH:lH2[Ds2+DT2(%) KV=lV2[uz2+'vzzl%, (24)
- Dy=a""'sinf(u/sinf)s, Dr=a~'sinf(v/sinfe. (25)

The length scales g, Iv are of the order of aAf and Az,
respectively. For a dominantly free-atmosphere shear
turbulence there is some justification, i.e., validity of
the mixing-length hypothesis, for writing ly=CraAf
and Iy =CyAz, where 0<Cy, Cy<1 may be related to
Kolmogoroff’s universal constant. Since such an assump-
tion cannot be made for a convective atmosphere, Iy
and Jy will be determined by trial integrations.

A complete simulation of Jovian turbulence requires
consideration of the form of the various ‘“boundary”
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F1c. 18. Profiles of the most realistic solution PBJN. (a) Com-
parison of the predicted and observed variation with 8 of # at
z=d. Units are km sec™. U denotes the solution, N and S the
mean Northern and Southern Hemisphere observed profiles after
Chapman (1969). (b) Latitudinal profiles of the normalized vari-
ables, u/u* at z=d and T/T*, w/w* at 2=d/2, Units are 104 km
sec™! for w, 10C for T', 10! km sec™ for u,
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layers if [y and Iy are to approach realistic values. The
formulation (24) should not be extrapolated down to
2=0 where /<<Az and where constant stress and thermal
boundary layers can form and which should have
separate parameterizations. However, in view of the
unknowns about the lower atmosphere such refinements
are ignored and the same boundary conditions (12)-(14)
are applied to (24). This will distort boundary layer
properties but this role should be represented at least
qualitatively.

At the upper boundary, z=d, some modification is
required as the zero-stress condition gives Ky=0 at
that level. This condition is not consistent with the
thermodynamic condition that T=0 at that surface as
the conductive transfer is now zero. To avoid a buildup
of heat at 2=d, a boundary conductivity Kp is intro-
duced and the second term of (23) is rewritten as

[(Ky+Kp)T: I, (26)
with Kp=0 except at z=d, where
Iyt
Kp=— u+v*|{ (27)
Az

This seems to be a reasonable expression for K g, being
consistent with Ky and similar to the exchange coeffi-
cients used in meteorology. However, the form of K is
not vital provided that its values are in a reasonable
range. Physically it represents a small thermal boundary
layer at the top of the atmosphere in which the eddy
motion is small enough to exchange heat but not
momentum, i.e., a thermoclinic layer. In a real atmo-
sphere a radiative transfer term would provide a more
realistic mechanism even though its role would be
similar. This formulation of Kp allows us to maintain
the model as a purely dynamical mode! that is related
to the model of the previous sections.

d. Solution PBIN for nonlinear diffusion

Various integrations of the equations were made using
the nonlinear diffusion coefficients, Eq. (24), and an
assumed axisymmetry. Experimentation showed that
a solution with the most realistic jet width and ampli-
tude and matching phase positions?® in the extra-
equatorial extrema of # (Fig. 18a) is produced by the
set of parameters:

Case PBIJN: AT=135K; 1y;=9618 km (=7a48),
ly=0.25 km (=0.1Az) with other variables being
identical to those in case PBJ. The non-dimensional
numbers had extremum values of Ro=5.6X1073,
Ta=7.6X10%, dz=0.27, with the latter two numbers
being based on the maximum K,=3.2X107° km? sec™*
value; Ky has a maximum value of 1.6X10® km? sec™.

[An important point to note in making a comparison
between an axisymmetric model and the Jovian atmo-

1 In comparison with Northern Hemisphere data.



May 1973 G. P. WILLIAMS AND J. B. ROBINSON
1 PBIN
TR RAR IR
o L] i
: Tolu et !
0 f AR ALV
ki v/ FO A A ¢
0 0 V4 \\\]// —\\ /,’ S
U T S W
. : {
T —T
05 06 07
) R
! O 10
— U3
40
~—~— . %0
——‘_—_\—‘/\_/00‘\/
N\/70
i —,\_/\_/_\//\80
9OJ
|O()\_’_”/ﬂ
120
130—;
Q T T
0Ss 06 07 08 09 1.0
(n) R'
} —
. o R -
O ‘]O’l
,/ 0 0
PR
0 o 10,
10 P
- - b+
0 —
05 06 07
it}
1
I
0 0 5
5 10
15
2 ]
.-] -5 -10
-5
0 -5
\ i °
0 | T T T T
05 06 07 08 09 [X¢]
(V) R

Fic. 19. Contours of the most realistic solution PBJN to simulate circulations in Jupiter’s atmosphere: (i)
X 10 [km? sec']; (ii) T [°CJ; (iii) » [m sec™1]; (iv) w [cm sec™]. (Note change in units for this figure).

709



710 JOURNAL OF THE

NORTH EQUATORIAL ZONE

ATMOSPHERIC SCIENCES

VoLuME 30

F1c. 20. Comparison of observed (left) and computed bands (right). Observa-
tions are from Michaux ef al. (1967, p. 70), computed values from PBJN w=0 iso-
pleths mapped with a foreshortening sing factor.

sphere is that the Northern Hemisphere data must be
regarded as the norm. This-is because the Great Red
Spot produces an anomalous (and non-axisymmetric)
circulation in the Southern Hemisphere. Furthermore,
a comparison of the u profile of the Southern Hemi-
sphere data (Fig. 18a) and the solution SA8 (Fig. 6¢)
suggests that there may also be a latitudinal variation
~in the heating in the Southern Hemisphere. |

The flow profiles and contours of the solution PBJN
are given in Figs. 18-20. The coincidence between the
u profiles of the solution and the Northern Hemisphere
data is good (Fig. 18a). The tropical jet is very similar
to that produced by the linear viscosity model PBJ and
is maintained by the -same dynamics, but in extra-
tropical regions greater realism in the # profile is
achieved in the production of three strong secondary
maxima and minima.

There are significant differences in the amplitudes of
the secondary # extrema, particularly in that at
R’=0.74. Tt is difficult to determine how seriously these
differences should be taken in view of the uncertainties
involved in the deduction of the observed profile.
Because of the way the # field is examined, the observed
profile reflects maximum atmospheric activity rather
than the climatic mean. The squareness of the observed
u profile could be a reflection of a squareness in the
cloud tracer field, as suggested by the w solution, rather
than being an intrinsic property of the u field. The
observed profiles indicate a zonal velocity that is
barotropically unstable, Buax= 6, which suggests either
that the observations are inaccurate or that non-
axisymmetric effects are active. The solution PBJN is
close to stability with Bn.x=1.02 and its reaction to
longitudinal disturbances will be discussed in Section 7.

The theoretical vertical velocity w (Figs. 18b and 19)
contains five positive and four negative regions. These
correspond well with the five zones and four belts which
are semi-permanent features of Jupiter. The bands of

the w solution and the planet appear to be coincident if
the zones (light color) correspond to a w>0 region, i.e.,
upper level clouds, and the belts (dark color) correspond
to w<0 regions. The differential rotation within the
extra-equatorial bands is as observed. :

It is difficult to compare the widths of the observed
and the computed bands as the bands on the planet vary
from decade to decade and there are no accurate
estimates of the climatological w field. As a crude
comparison, Fig. 20 contrasts the observed (or partially
schematic) banded structure given by Michaux &t al.
(1967, p. 70) and that of the w solution. A general
similarity is apparent between corresponding bands
and in the narrowing of the bands with latitude up to
the inactive polar region.

Even if the convective theory presented above is not
applicable in its entirety to Jupiter, the agreement
apparent in Fig. 20 strongly suggests that the cell
structure on Jupiter is similar to that depicted by
Fig. 19(1). If so, then the Jovian circulation cells are
fairly uniform with the up and down branches of each
cell covering equal areas. This result provides indirect
evidence that the CISK mechanism cannot be active
in the Jovian atmosphere for the circulations associated
with that latent-heat-releasing mechanism are very
asymmetric, the area of an upward branch being about
one-fifth that of a down branch (Charney, 1970).

The square shape of the w profile (Fig. 18b) implies
that the clouds will be uniform in intensity across each
zone and cut off sharply at their edges. Although a
large lateral mixing of turbulent elements could diffuse
such a band structure, the presence of this type of
basic w mode is needed to produce the highly orderly
Jovian cloud structure. The polar region corresponds
to a region of no mean vertical motion or a region of
small scale incoherent motion.

Fig. 19(ii) shows that moderate thermal boundary
layers form at the two horizontal surfaces, and that the
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wave-like disturbance in T occurs mainly in the interior
region (perhaps due to forcing by the T'=0 upper bound-
ary condition). Such boundary layers may be a feature
of the real atmosphere but even so this solution is not so
different from that of PB] in which no layering occurs.
This suggests that such layering does not qualitatively
influence the basic character of the flow.

Finally, it must be noted that although the solution
PB]N is realistic, a value of I;;=7aA8 was used in its
calculation. This mixing length is equal to about half
the width of the tropical jet. Although disturbances are
observed often of this length scale, they may be more
characteristic of an upper level boundary layer than of
the free atmosphere. The failure to constrain the
parameterization to the subgrid-scale motions indicates
a fundamental weakness in this calculation and the
axisymmetric approximation.

Further calculations using a separate boundary layer
formulation allow a reduction of I;; toward aA@ while
still giving realistic results. Such solutions (not shown)
have pronounced boundary layers and an almost neutral
interior lapse rate but the characteristics of the solution
remain close to those of PBJN as regards cell scale and
jet width. The production of a realistic cell scale seems
to depend on having the crucial relative mixing factor
m=Ky/Ky equal to 10° in the free atmosphere. As
formulation (24) covers boundary layer as well as the
interior turbulence, Ky is too large in the interior. This
then requires that a larger than desirable Ky (i.e., Iu)
be used to achieve m=105 Although a separate
boundary layer parameterization allows a lower Ky and
then a lower I, to be used in the interior, it appears
that I;~aAf is still a relatively large mixing length
compared to Iy=~10"'¢Af normally used in shear
turbulence calculations. In these calculations with
ly=aAf the equatorial zonal velocity is much smaller
and the tropical jet no longer has a flat profile. To obtain
aflat jet in this case we would probably have to perform
3-D integrations and allow longitudinal disturbances to
develop to provide the large mixing implicit in the
PBJN flow. Thus, a flow like PBJN that has such large
mixing cannot, strictly speaking, be considered to be
basically axisymmetric.

The characteristics of the PBJN flow in extra-
equatorial regions have been made more realistic than
those of PB] by the scale-selective behavior of the non-
linear coefficients of the mixing length theory. Although
the general characteristics and conclusions concerning
the PBJN solution may be representative of the
crculation dynamics, we must bear in mind the
possibility that our parameterization is imitating the
true cause and formulation, not representing it.

7. Concluding remarks

The realism of some of the solutions we have discussed
suggests that they may provide a reasonable preliminary
description of the Jovian circulations and that those
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motions may be a manifestation of large-scale organized
convection. Correspondence between observation and
theory occurred most closely for solution PBJN
(Figs. 18-20). An understanding of this solution was
built up from simpler solutions that examined the
general properties of convection in a spherical gravity
field.

The atmospheric flow suggested by solution PBJN
consists of a series of elongated Bénard type rolls or
“cyclic structures” forming five zones and four belts
(Fig. 20). The square-shaped w variation with latitude
produces a uniform cloud intensity and sharp zone
boundaries. Strong horizontal turbulent mixing tends
to diffuse the cloud bands. The bands decrease in
intensity and width away from the equator. The polar
region has no organized large-scale motion because of
rotational suppression but it probably has disorganized
small-scale activity.

Qutside the equatorial bands, # and w are correlated
in such a way (Fig. 18) that the equatorward side of
zones (w>0) move in retrograde (#<<0) and the pole-
ward half moves positively (#>0). The opposite holds
but to a lesser degree for the belts (w<0). This all
corresponds with the observed differential rotation
within the bands. It is worth noting that this differential
rotation property is a basic feature of convection in a
rotating system and does not depend on parameter
values. The zonal velocity extrema coincide with the
edges of the bands where w=0, and the maximum
values of the barotropic instability criterion occurs at
minimum % values and could lead to raggedness in the
zones.

The zonal motion itself consists of a large positive
upper level jet of 100 m sec™ near the equator with a
retrograde motion of 60 m sec™! below it. Between these
jets and the inactive polar region beginning at 45° are
regions of alternating positive and negative zonal flow
correlated with the banded structure. There is a general
tendency in these alternating jets for the positive flows
to be larger than the negative ones [Fig. 19(iii) ]. These
small upper level jets are countered by opposite flows
directly below them.

Thermal “boundary” layers form at the top and
bottom of the atmosphere where most of the small
convective elements (parameterized as an eddy conduc-
tivity) exchange heat with the “boundaries.” The
vertical temperature gradient is weaker in the interior
where the temperature has a horizontal wave-like form.
Most of the vertical heat transport is produced by the
motion in the equatorial region where warmer fluid
rises to higher levels than elsewhere. This could produce
a higher effective temperature for the equatorial region.

The temperature gradient and depth of the realistic
solution PBJN were 135K and 50 km. However, similar
solutions can be obtained at other depths with AT
=135K X 30/d for the range 20<d <500 km; thus, the
actual AT of our framework could lie in the range
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10<AT< 250K, i.e., with a lapse rate of 0.02<AT/d
< 12K km™L. The lower values of AT are to be favored
as they provide a lower and more realistic heat loss
from the planet and give lapse rates close to neutral.
Unfortunately, the lower AT values are associated with
the larger d values for which the Boussinesq model is
less adequate. Thus, we are unable to make a definitive
estimate of AT and d from the observed heat flux value
with a Boussinesq model. For this, a non-Boussinesq
model is needed.

The latitudinal velocity v achieves a maximum value
of 7m sec™ at the upper surface. There are no estimates
of the planetary v, probably due to its being small
compared to #.

Although there seems to be no inconsistency between
the observed and theoretical fields, it must be borne in
mind that the theory is based on non-established
hypotheses regarding the parameterization of the
turbulence. Apart from trying to justify this formula-
tion, there is a need to develop a hierachy of models
towards a more complete parameterization. This seems
desirable now that we have some idea of what must be
parameterized and that realistic solutions can be ex-
pected. Even though boundary layer parameterization,
radiative transfer, and non-Boussinesq effects need to

be added for quantitative simulation, the main need is.

to formulate the role of the turbulence, and understand-
ing this in just the Boussinesq framework is'a desirable
first step. We do not expect the flow in a non-Boussinesq
model to be so different from that outlined above in that
changes will be confined to the z variation with cells
being distorted only in that direction. Hopefully, the
latitudinal variation of the flow fields, upon which our
observational comparisons are based, will be essentially
unaltered.

Many of our solutions have shown that positive
equatorial zonal motions can occur in an axisymmetric
flow. The possibility or impossibility of such a feature
has been discussed by Gierasch and Stone (1968) and
Hide (1970). In our solutions such an equatorial flow is
made possible by allowing a large lateral mixing of
momentum from the jet at R'=0.95. Such a large
mixing can only realistically be produced on Jupiter
by large-scale longitudinal disturbances, in which case
the actual atmospheric flow is not strictly definable as
axisymmetric. In other words, an axisymmetric model
can produce realistic solutions but under conditions
which suggest that the real atmosphere is
non-axisymmetric.

The axisymmetric jet does not peak exactly at the
equator but has a region of maximum angular velocity
at R'=0.95. To remove internal stresses by tending
toward a state of solid rotation, the flow transports
relative angular momentum toward latitudes of lower
angular velocity; this follows from Eq. (20) when used
in the angular momentum equation. This produces
transfer toward the equator, i.e., against the angular
momentum gradient, and maintains the equatorial flow.
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Tt should be noted that the observations do not demand
that the jet peak right at the equator, only that the
profile be fairly flat in the equatorial region. Although
the jet at R’=0.95 is a basic feature of this type of
convection and is not dependent on parameter values for
its existence, the same is not true of the value of the
zonal velocity at the equator which is dependent on the
eddy viscosity value—but this may not be so when
longitudinal variation is allowed and 3-D flow
considered.

Subjecting the axisymmetric flows PBJ and PB]N to
longitudinal perturbations through 3-D integrations
indicated that although the convective amplitude is
primarily axisymmetric, the flows themselves take on
a cellular shape in the equatorial region (Fig. 21).
The 3-D form of the equatorial cells is definitely due to
convective instability as the flow remains barotropically
stable. Now we know from 3-D calculations for a similar
flow (case A2) that rolls are preferred at lower Rayleigh
numbers in this system so that the axisymmetric
solutions PBJ, PBJN are representative of a possible
axisymmetric flow even though it cannot exist in itself
at their parameter values. The slow growth rate of the
3-D cells out of the axisymmetric rolls (~100 hr) sug-
gests that these parameter values lie close to the
transition point of 2-D to 3-D flow. Thus, we expect that
flows similar to PBJ, PBJN can exist but at lower
Rayleigh numbers. Alternatively, recent observations
by Keay et al. (1972) and Westphal (1969, and 1972
private communication) indicate the presence of equa-
torial hotspots on Jupiter very similar to the 3-D cells
produced by the PBJN case so that the constrained
axisymmetric flow and its subsequent breakdown may
represent a more realistic picture of the lower atmo-
sphere than the simpler axisymmetric state of the upper
atmosphere.

In the 3-D integrations oval- and streak-shaped
temperature anomalies occur. These must be due to
convective instability as the unrealistically large mixing
lengths suppress barotropic disturbances. A large cool
temperature anomaly! comparable in shape and loca-
tion to the Great Red Spot can be produced as an eddy*
of an initially greatly disturbed axisymmetric PBJN
flow. The disturbance is relatively short-lived because
of the high viscosity used in the calculations. To achieve
a satisfactory examination of Jovian flow requires that
we perform multiple 3-D integrations using the non-
linear diffusion model with a separate boundary layer
formulation and low values for the eddy coefficients.
Such integrations will be discussed in a later paper.

Apart from the above calculation, we can also make
some remarks about the actual Great Red Spot by
considering what the solution PBJN reveals about its
general environment. From the solution it appears that
the South Tropical Zone in which the spot is embedded
is a region of rising motion linked in cells to downward

1At z=d/2.
12 A possibility suggested by Golitsyn (1970).
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F16. 21. Isotherms at z=d/2 at 5° intervals for the three-dimensional form of
case PBJN. Solution is mapped onto an orthographic projection centered on the
equator with periodicity over 60° of longitude. Flow is in equilibrium and arrow
indicates retrograde direction of cell motion.

motion in the South Temperate Belt and the South
Equatorial Belt. Compared with its Northern Hemi-
sphere equivalent, the South Tropical Zone is very wide
but the two corresponding belts have hemispheric
differences (Michaux e! al., 1967). It is difficult to see
how the mass conservation of the broader South
Tropical Zone can be maintained by the narrow South
Temperate Belt. Although the matter is not clear cut
as the values of the velocity are not known for the zone,
we can speculate that to maintain continuity it is
necessary to have a downflow (or weaker upflow) by
non-axisymmetric features, i.e., the Great Red Spot.
The question of whether the South Tropical Zone has
been broadened by the presence of the Great Red Spot
or whether the Great Red Spot has been brought into
existence by the broadening of the zone is a moot one.
But, clearly, the mass conservation of the region in
which it is embedded may provide clues and constraints
for theories of the Great Red Spot.

In summary, it would appear that a simple gross
explanation of Jupiter’s circulation might be possible:
that convective modes can produce the banded and
jet-like elements, that ovals and streaks are the intrinsic

shape of transient convective disturbance elements,
and that solar heating effects (seasonal and diurnal) are
secondary. These properties plus the predominant
axisymmetry could make an understanding of Jupiter’s
atmosphere possible despite limited data, if the assumed
dynamics is correct. (Unfortunately, the underlying
scale-interaction mechanism is not understood.) The
production of a large anomaly suggestive of the Great
Red Spot in a simple system without complex features
is possible but as yet only tentatively so. The small-
scale thermal elements normally envisioned for convec-
tion may well be confined by the rotation of the planet
to a lower thermal “boundary” layer and be unob-
servable. Only the large-scale motions traverse the
whole atmosphere and do so mainly near the equator.
The procedure adopted in this study has been one of
trying to find, for a given mode, the flow most consistent
with the observations and then of asking ourselves
whether the conditions under which such a flow occurs
are meaningful. This process needs to be repeated for
other possible modes, particularly that suggested by
Stone (1967), so that the most realistic one can be
isolated. Initially we must concentrate on basic modes
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in the belief that the more fundamental a mode is, the
greater is the probability of its occurrence.

APPENDIX
Numerical Techniques
1. Finite-difference equations

The method of integrating Egs. (1)-(3) was adapted
from that given in Willlams (1969). Only variations
from that method will be documented here and further
details may be found in the earlier paper.

A staggered grid system, similar to that employed in
the cylindrical geometry, is used for the spherical
geometry. Velocity points are arranged around a
central p, T point. The p, T points are placed at the
intersection of latitude, longitude circles such that
0=I—5A0, p=(J—1)A¢p, 3=(K—3%)Az, where =1,
2, o, L1 =12, ..., M+1; and K=1, 2, ...
N-+1. The intervals between p points are given by
A= (x/2)/(I—1), Ap=®/(M —1), Az=d/(N—1) for a
hemispheric domain of angular sector ® in longitude.
Radial velocity points lie on longitude circles through
the p points and are located midway between the p
points but at the same height. The w points lie on
vertical lines through the p points, being midway
between the p points. The # points lie on latitude
circles through the p points, being midway between
the p points in 3-D calculations but coincident with
them in axisymmetric calculations.

Boundaries are placed midway between two extreme
4 points so that normal velocity points lie on them,
providing a natural bias for boundary layers. At the
pole, only a » boundary point is defined. This arrange-
ment makes the computation straightforward as no
singularities occur; this seems to be a useful feature of
the staggered-grid system in spherical geometry.

The prediction equations are written in standard
central difference notation as:

SVEE s N " —p—z
S +E69(51n0v u )+—1€6¢(u u )+6.(w u)

1 u
= “_5¢P—<29+—>
‘R R
—— —z
X (cotf v sinaw—l-w ? sinf)+F,, (Al)
EVRE D I R S W —bz
o +Eég(sm0v v )+EB¢(M v )8 (w o)

1 S — V2
= ~—8pp+[29+(u/R) Ju COSOM—‘wa +F,, (A2)
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and the equation of magss conservation as

1
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R R

where R=asinf. The equations are applied at the
7 time level but the diffusion terms are evaluated

at 7—1. _
The expressions for the linear diffusion terms are:
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The nonlinear diffusion terms were taken in the form

1 a
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a sin2f :
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1 This unusual form is necessary to provide conservation of
kinetic energy and angular momentum.
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are related to the rates of strain.

The strain terms are staggered in space also. This is
because in the basic Navier-Stokes equations, the
strains e;; must be correctly staggered if the finite-
difference equivalent of the energy molecular transform
equation [see, e.g., Eq. (20) of Williams (1971)] is to
give accurate dissipation estimates. Thus, normal
strains e;; are defined at p points and tangential strains
e;; are defined at the intersecting corners of the 4,7
coordinates. The arrangement reflects the molecular
functioning of the fluid and the nature of pressure in
the basic Navier-Stokes derivation. If the strain func-
tions are incorrectly staggered, the dissipation can be
strongly enhanced.

The time iteration of Egs. (A1)-(A4) is accompanied
by the solving of the following Poisson equation for p
to satisfy (AS5) implicitly:

1 1

-a—R?(So(Sina&}P) +—1§5¢¢p+6np

1 1 .
=Eée(sinBGV)+E5¢(GU)+52(GW), (A14)
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where GU, GV, GW denote the various components of
the prediction equations. Eq. (Al4) can be solved
efficiently using trigonometric series expansions in ¢
and z in exactly the same way as for the cylindrical case
of Williams (1969). This similarity is produced by the
shallow atmosphere approximation.

The time step Al used for the planetary-scale calcula-
tions was of the order of 200 sec, being determined by
the diffusion criterion. The need to take smaller time
steps because of the small grid lengths near the pole
can be avoided by selective scale filtering (see, e.g.,
Holloway et al., 1972). However, Jupiter seems to be
inactive beyond 45° latitude so Integrations can be
terminated at that latitude and any At problem avoided.
For axisymmetric flow there is no problem.

2. Some numero-physical limitations

The equation system (A1)-(A4) with (Al14) was
chosen initially in the hope that its three-dimensional
form would provide a generalized model for investigat-
ing both shallow and deep non-hydrostatic atmospheres.
However, in calculations for very shallow or highly
hydrostatic fluid layers the apparently general 3-D
Navier-Stokes equations become unsuitable for calcula-
tion on certain computers unless they are modified.

The analysis of what happens when /L is decreased
can be made either physically through a scale analysis
or numerically through accuracy and error analyses.
The latter procedure is taken so that the limitations can
be quantitatively defined. The problem arises in two
areas: 1) in the prediction equation w,=p,+GW, w be-
comes small as d/L decreases so that w, becomes of the
order of the roundoff error and the two other terms
become mutually balancing, i.e., hydrostatic balance is
reached; 2) in the Poisson equation the two vertically
differentiated terms p.. and GIW. dominate the equation,
resulting in large errors in the predicted horizontal
variation of p.

The degeneracy of the Poisson equation occurs
rapidly as (d/L)?; for example, for a machine accuracy
of 1X1078, the error in solving the Poisson equation is
only 2X10~7 for d/L=1 but becomes 2X10~* for
d/L=1/100 and 1X10™' for Jd/L=1/1000. Thus,
d/L=1/1000 is about the limit of the 3-D method for
this level of machine accuracy. Needless to say, this
limitation is machine-dependent and would be less, say,
for a CDC 6600 than a UNIVAC 1108. With 1108
double precision, i.e., an accuracy of 1X10716 the
Poisson equation can be solved accurately down to
d/L=10"% where the error is 4X107% Thus, the
limitation can be overcome for most practical purposes.
However, for single-precision 1108 calculations, in-
accuracies reach a serious level for the very shallow
Joviana tmosphere where ¢/L=1/1000. For the Earth’s
atmosphere the problem could be ignored.

A similar problem occurs with the horizontal grid
points when the pole is approached. There compression
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of grid points produces a ratio
(Ly/Lo)*= (a sinfA¢/alf)?=A¢/4=10"3

in the staggered grid system. The problem is not serious
as the solutions are still accurate. The problem is acute
in the non-staggered grid system where sind=0 occurs.

Although for small d/L the hydrostatic approxima-
tion can be made and a simpler numerical scheme con-
structed, it would have little computational advantage
over the then slightly redundant 3-D scheme. As we
require a general model to investigate deep and shallow
atmospheres and intermediate ones, we prefer just to
modify the 3-D scheme when applying it to very
shallow system [d/L=0(10-%)7]. The computational
procedure resembles that used in ocean circulation
calculations (Bryan, 1969) and its validity has been
confirmed by comparing its solutions with those ob-
tained by the standard 3-D method in double precision.

To illustrate the procedure consider the simple two-
dimensional system of equations

b= —m,4+GV, w,=—m+GW, D=v,+w,=0. (AlS)

Solving V2p=V-G for this system for small (d/L)*
gives a quasi-hydrostatic pressure p*. Let p*=p°+e(%),
where p¢ is the correct pressure and e(x) the x-varying
pressure deficiency. The deficiency e(x) enters when a
prediction is made for v, i.e., vi=—p;+GV=—pi—e
+GV, so that v;=1}+e¢,, where t° is the correct v. Using
the fact that e(x) is independent of z for small (d/L)?
it can be obtained by averaging the equation over z, i.e.,
7= —e, as 9°=0. Then v*=v"—7° gives the correct v
and the p field can be adjusted. The correct w field can
be obtained by integrating w,=—u;,. This simple
procedure can be extended to three dimensions by
solving a two-dimensional Poisson for e.

3. Some alternatives in solving the Navier-Stokes
equations

1) In the method discussed by Williams (1969),
prediction equations are used for all three velocity
components (#,2,w). It is slightly more accurate to
obtain w, for example, by integrating the conservation
equation. Values of the divergence D are then zero
everywhere except at z=d—(Az/2), but values there
are kept small by the procedure of D; adjustment in the
Poisson solution. But now the adjustment is only made
atz=d—(Az/2). The result is that with D=0 practically
everywhere then quadratic conservation properties, etc.,
are improved.

2) The zero’th mode of the pressure eigenfunctions
can be obtained from the vertically averaged pressure
field more aesthetically than by direct integration (see
Williams, 1969, Section 6e). For convenience consider
an eigenfunction expansion to a 2-D Poisson equation:

P=§B; psHs(3). (A16)
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Averaging over z gives the zero’th mode as py=Np
where IV is the number of eigenfunctions. Thus, p, can
be obtained from p via the averaged equation of motion

pr=GV—u, .(A17)
which in the finite-difference form
_ — ;‘r—l

0:p=GV+4— (A18)
2At

ensures that D,=0. Unlike the degenerate Poisson
equation for g, Eq. (A17) does not lose information
in GV through its differentiation and the integral
constraint (44) of Williams (1969) is achieved directly.

3) The boundary conditions on p can be met by
introducing simple auxiliary pressures. For Egs. (A15),
for example, these would be defined as

pw= [ GWds, pv= / GVdz, (A19)
0 1]

with boundary values given by pw.=GW, pv.=0 on
z=0, d and pv, =GV, pw,=0 on =0, L. Then writing
p=pv+pw-tp*, the Poisson equation becomes

V2Pt = — P, — PUa, (A20)

with simpler boundary conditions of by ps=0. The
equations of motion reduce to

we=—(p*tpw)s, we=—(p*+pv)..  (A21)
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